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.5.ASSTRACT s

The objective of this research is to develop techniques and procedures for
computing the statistical characteristics of some electromagnetic scattering
phenomena from radar targets. Radar measurements are perturbed by electromagnetic
scattering phenomena induced by complex targets including radar cross section
scintillation and glint or position error. The statistical characteristics of these
phenomena may be used to evaluate radar system performance, develop optimum tracking
systems, and develop stochastic models to use in system simulations.

The procedures developed use numerS.zal integration to compute the moments of
the probability density functions and the characteristic function method to compute
the cov.-triance functions. As part of the research, a deterministic model of the
electromagpetic scattering from M bodies has been developed and applied to an
ellipsoidal model of a common target drone. This model is used as the elecitromag-
netic scattering input to the analytic computation of the statistical characteris-
tics and to the simulation which is used to check the general accuracy of the
analytic solutions.

Thes statistical characteristics are computed at three points on a typical
jflight path of interest for three different sets of target flight characteristics.
These statistical charaicteristics are conditional on the flight path, i.e., they
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are functions of the flight path. The agreement
between the analytic computations• and simulations
is excellent. The sensitivity of the electromag-
netic scattering statistics to the flight motion
statistics is generally as expected. The data
from the simulations are very similar In nature
to dynamic measurements.
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1. INTRODUCTION

1.1 Introdur'.ion to the Radar Problem

Many modern radar systems are capable of tracking targets in four

dimensi-..s: range, azimuth angle, elevation angle, and doppler

frequency. There is, however, a point at which target induced effects

become significant contributors to system measurement errors. Angle

tracking is perturbed by an effect called glint; range tracking and

other functions are perturbed by cross-section scintillation; and

doppler tracking is perturbed by apparent target phase center motion

not related to translational motion.

A pulse doppler radar system transmits a pulse of electromagnetic

energy of known amplitude and phase at a known time. The signal

reflected from a target is received by the radar, and is processed to

give

(1) The target range

(2) The target size or radar cross-section (RCS)

(3) The target azimuth angle

(4) The target elevation angle

(5) The target phase angle.

; The errors involved -in these measurements can be divided into two

t basic types. Type I errors are those caused by noise and imperfect

signal and data processing. These errors exist even for a perfect

target such as a sphere. Type II errors are those introduced by the
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Sthe target. A complex target such as an aircraft, or even two spheres,

has RCS and scattering phase which are functions of the aspect angles

and reflect or scatter a wavefront which is distorted or nonspherical.

The Type I errors have been investigated and extensively studied

[1, 3]. The Type II errbrs have had less development than the Type[ errors. The primary reasons for this are the complexity of the

problem and the dependence of theeffects on the particular body under

consideration. Unlike thermal noise which can readily be modeled as

white noise, the target induced effects depend on the target, its

aspect angles and its motion. The following is a summary of the errors

of interest and an indication of the relationship of the two types of

errors#

The equation for power received by a monostatic radar is given by

Pt G2 X2 S

Prec (4ir3 R) 4 L

where

Pt = transmitted power

G = antenna gain

X = radar wavelength

R = range from radar to target

L = numerical factor to account for losses

S = target RCS.

The measurement of target range is generally limited by the signal-to-

noise ratio which depends on received power. The rms range error

caused by thermal noise is given by [31:

er 2 2BE (1.2)

NO
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where

c= vel•,city of lightI = tranmitted pulse width

B: receiver bandwidth

E = received energy

N0 = receiver noise power spectrum.

The target induced errors are manifested as changes in the received

energy, E, (sometimes exceeding 50 decibels peak to peak) caused by

changes in apparent target RCS; it is apparent from (1.2) that the two

errors are interrelated. Similarly, the target induced errors affect

the angular position measurements and the target phase angle (doppler

frequency) measurements.

All angle tracking systems are essentially phase-front measuring

devices and have been shown to be equivalent to each other in perfor-

mance [4]. Only amplitude monopulse systems will be discussed herein

since they are predominant in the modern generation of radar systems.

A dual-plane monopulse radar generally has four squinted beams which

are combined to give a sum channel and two angle error channels (2].

An ideal target on boresight will give zero outputs from the angle

tracking channels. The target induced error is manifested as a tilt

in phase front which gives an apparent target error signal. The

, angular error signal is inversely proportional to range. The effects

of glint, then, are most significant at close ranges such as

encountered in homing missile systems. The theoretical rms angular

error, caused by thermal noise for a uniformly illuminated antenna,

is given by [1)
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0.628 ebe. (1.3)

N0

where eb is the half-power beam width. Again the effect of variation
in E should be noted.

Doppler tracking, in a pulse doppler radar, is accomplished by

measuring the phase shift of the RF signal from transmission to

reception, modulo 2ff radians. The rms phase error caused by thermal

noise is given by [3]

e= . (1.4)
cp 2- BEnoo

In addition to this error, there is an apparent target phase center

motion which is aspect angle dependent., Targt't motion, other than

purely radial, may cause a random modulation of the target phase range.

However, as outlined previously, the major interdependence of the

two types of errors are caused by the change in RCS and so in the

received energy, E. Therefore, it is possible to separate the two

types of errors in a convenient manner. It will be assumed hereafter

that the only interdependence is that induced by the RCS. Thus,

modeling of the target induced effects need not consider the radar

characteristics, except as delineated below, and the radar receiver

model need not be modified to consider the Type II errors.

The phenomena of amplitude scintillation, glint, and doppler

scintillation are different manifestations of the vector sunmmaticn of

the electromagnetic waves reflected and refracted by complex targets.

Although basically target induced, these phenomena are affected by

some of the characteristics of the observing radar such as resolution,
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polarization, wavelength, tracking implementation, and type (monostatic

or bistatic*). All but very few targets have RCS, glint, and phase

centers which are sensitive to wavelength and polarization. These

characteristics should be included in any complete model of the target

phenomena, but not all are within the scope of this work.

Although bistatic radars are of some interest, especially in semi-

active homing systems, the discussion and proposed research will be

limited to monostatic systems. It is assumed that the range resolution

Is such that the entire target is always in the range resolution cell.

Similarly, it will be assumed that the target is smaller than the

angular resolution and is always in the angular resolution ceJl. The

range of radar frequencies will be limited to those most commonly used

for search and tracking systems, i.e., L-band through K-band GHz

through 10 GHz).

It would, at first, appear to be of value to have a complete

deterministic model of the particular target of interest to the radar

system. Further consideration, however, indicates that this is not

a very practical goal. The target appearing in the radar field of view

and the target aspect angles will seldom be known, except perhaps by

the ability to classify the target in general terms such as rotary

wing; fixed wing, propeller driven; fixed wing, Jet propelled; etc.

It would not be practical to store complete target data for all targets

* .of interest in the radar system computer even if it was possible to

A monostatic radar has its transmitting and receiving antennas
collocated or common whereas a bistatic radar may have its trans-
mitting and receiving antennas separated by large distances.
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generate such data. The most obvious and most practical approach is to

model the problem statistically.

The objective of this research has been to develop techniques to

determine important statistical properties of target induced scintilla-

tion and glint.

1.2 Review of Past Work

A brief review of the history and evolution of radar systems and

the development of models will help to gather perspective on the

problem and the status of work in the area. The review presented is

necessarily brief and oriented toward the problem under study.

References [1, 2, 3, 5, 6, 7, and 8] are general treatises on modern

radar systems.

The radar systems operating at the start of World War II were used

primarily for early warning and ranging since they had poor angular

accuracy. The war spurred research and development on radar systems,

especially radar fire control systems for antiaircraft systems. The

SCR 584, introduced early in the war, was the first operational fire

control system developed by the U.S. which required no assistance from

optical angle trackers. It could track targets in three dimensions:

azimuth angle, elevation angle, and range. Since World War II the

development and evolution of radar systems have continued at an almost

fantastic pace. The types of radar systems have proliferated due to

differing operating requirements and constraints.

Amplitude scintillation was noted in World War II when target

fading was frequently observed. It was not until angle tracking systems

improved significantly that glint was first noticed. At first it was

ascribed as an effect of amplitude scintillation since large values of
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glint occurred only with low signal levels. Later it was determined to

be a separate phenomenon. The relationships between glint and

amplitude scintillation had to wait even longer before it was clearly

established. It is now accepted that the three phenomena of amplitude

scintillation, glint, and doppler scintillation are different manifes-

tations of the same target induced effects.

The development of target models, both analytical and statistical,

parallels the evolutionary growth in sophistication and performance of

radar systems. Amplitude scintillation and its effects on target

detection have been extensively treated from a statistical point of

view. Marcum [9] developed the theory of detection probabilities of

constant cross section targets in additive white noise for search type

radars, considering the effects of pulse integration, scanning effects,

etc,

Swerling [10, 11] advanced the theory by considering fluctuating

targets. The four cases originally considered, which encompassed most

targets, are as follows:

(1) Case I - The target is assumed to be constant for time-on-

target for a single scan but fluctuates randomly on a scan-to-scan

basis. The probability density function of the target cross section,

S, is assumed to be:

fs)- exp - s (1.5)

where

sE (S)
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(2) Case 2 - The target fluctuations are random on a pulse-to-

pulse basis. The probability density function is the same as for

Case 1.

(3) Case 3 - The target is assumed to be constant for the time-

on-target of a single scan but fluctuates on a scan-to-scan basis with

the cross section having a probability density function given by

S(s) x - s2 0 . (1.6)

(4) Case 4 - The target fluctuations are random on a pulse-to-

pulse basis with the same probability density function as Case 3.

These distributions are chi-square distributions with 2 and 4

degrees of freedom for Cases 1 and 2 and Cases 3 and 4, respectively.

Swerling's work has found wide acceptance in the field, especially

since the results were presented in convenient graphical form. Swerling

[12] has investigated additional fluctuating models including log-

normally distributed targets. Heidbreder and Mitchell [13] have also

investigated detection probabilities for log-normally distributed tar-

gets. A log-normally distributed target is one which has a cross

section whose logarithm is normally distributed. The density function

is given by

~5 ( s = ~ j .1 . ( l n s -L I 2 }f f(S) - exp -2,s 0
as ,/-2 7 2 a

(1,7)

where ti and a are the mean and variance of ln S, respectively.

Sponsler (14] investigated the track-while-scan problem encountered

with mechanically scanned search radars. Using a first-order, two-

state Markov process, Sponsler established bounds on the scan-to-scan

correlation coefficient and derived the Kolomogorov differential
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equations for a nonstationary, continuous parameter Markov process

which could be used to simulate radar data for arbitrary flight paths.

The equations are a function of the blip-to-scan ratio, i.e., time-on-

target to scan time ratio.

Weinstock [151 investigated target models for missile and

satellite shapes and concluded that the chi-square models give poor

representation of the tails of the distributions. Weinstock also con-

cluded that if one was constrained to using chi-square models the

median rather than the mean should be specified.

The U.S. Naval Research Laboratory has been investigating glint

since 1947. The efforts have been devoted primarily to understanding

and explaining the underlying causes of the phenomenon. The first

published work on statistical modeling of glint vas by Delano [16:, 17].

Considering mathematically simple arrays of point_ scatters, Delano

computed the statistical distribution of the angular errors. For

example, considering a single angle tracking channel and a linear array

of scatterers of statistically independent amplitude and phase, all

scatterers having approximately the same mean value, Delano derived the

result that the apparent target center is outside the actual target

13.4 percent of the time. This result was of great significance and

has been quoted many times, often out of context.

Muchmore [18, 19] investigated amplitude scintillation spectra

using Delano's models. Although Muchmore's and Delano's work was

criticized by Peters and Weimer [20, 21, 22] because of the simplicity

of the models, the spectra obtained were reasonably similar to

empirical results. Development of statistical glint models has not
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progressed significantly since tzLese two papers, probably due in

part to the extreme complexity o, the problem.

Meade et al. [23] investigated the two body model, often called

the dumbbell model, Lnd derived the result that the apparent target

position, eT, is giver by

/ 1-k 2  (1.8)
2 I1 + k2 + 2k ccs p

where

80 = angular separation of the targets

k = cross section ratio of the targets

T = relative phase angle of the response

of the tar6,.ts.

Meade's results indicate that the "agle error can go to infinity.

Ostrovityanov [24] corrected this erro, by noting that the assumption

tan et, e was implicit in Meade's derivat:on. Making the correction,

one finds that e is bounded by ±+f/2 which is more reasonable. Howard

[25] interpreted glint as a distortion or ti.'• in the wavefront and

demonstrated means of computing glint as a fUtnct!on of aspect angle

for N-body targets, where N is any finite numiber, Gubonin [ 26] used

Howard's interpretation of glint and derived glint statistics, arriving

at essentially the same results as Delano. Gubonin die., however,

avoid the implied approximation of tan e 6 0 and obtained more general

results.

Lindsay [27] expanded on the phase front approach and co,%cluded

that glint and amplitude and doppler scintillation can be expZ, i:ed by

considering VT, i.e., the normal to the phase front, and its relatton

to the antenna beam axis. Dunn and Howard [28] concluded basically



the same fact independently, and demonstrated that the phenomena can

be explained by considering the Poynting vector of the reflected or

scattered wave.

Modeling of large complex radar targets such as aircraft is at

best an extremely difficult and rather inexact task [29], and the

techniques used are guided to some extent by the specific objective

of the researcher. Little or no effort has been devoted to target

modeling as proposed herein. Previous work has been devoted to

investigating or modeling one or more of the phenomena such as Borison

[30] in doppler scintillation; Swerling (10, 11, 12], Weinstock [15],

Heidbreder and Mitchell (13], Edrington [31] and Sponsler f14] in

amplitude scintillation; Muchmore [18] in scintillation spectra;

ki Delano [16), Howard (25], Gubonin (26], Besalov and Ostrovityanov (32],

D'-,n and Howard [29, 33], and Sims and Graff 134, 35] in glint; or in

the analysis of the relationships among the phenomena such as work by

Lindsay [27] and Dunn and Howard [28].

RCS modeling is the most developed area of radar target

scattering. The IEEE devoted an entire issue of the Proceedings (Vol.

53, No. 8, August 1965) to radar reflectivity. Included in the papers

was a rather extensive bibliography [36] of work in the field through

1964. A bibliography of more recent works may be found in (37].

Techniques in RCS modeling range from the exact solution for spheres

by Mie [38] to the empirical approximations by Crispin and Maffett

[39]. Three comprehensive works in the field have been published in

recent years [40, 41, 42]. Some of the more interesting work in radar

scLttering recently include the works of Ross [43, 44], Oshiro, et al.,
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[45, 46, 47], Moll and Seecamp [48], Ryan ,49, 50], Keller [51, 52,

53], Bechtel [54], Uslenghi and Lee [55], and Pierson and Clay [56].

Electromagnetic (EM) scattering has been categorized into three

regions: Rayleigh, resonance, and optical, dependiug on the character-

istic dimensions of the body. The Rayleigh region is characterized by

bodies whose characteristic dimensions are less than a quarter of a

wavelength. In this region, the RCS is approximately proportional to

the volume squared and inversely proportional to the wavelength of the

fourth power, neglecting degenerate cases such as discs and wires. The

resonance region covers the region from approximately a quarter

wavelength to a few wavelengths in body dimenions. In the resonance

region body shape, orientation and specific dimensions are of

particular importance. The simplest example of resonance effects is

the variation of cross section versus frequency curve for spheres.

The optical region covers bodies whose characteristic dimensions

are large with respect to a wavelength. In the optical region many

approximation techniques such as geometric optics, physical optics,

geometrical theory of diffraction, and fringe wave theory are applied.

Modeling of glint has had less development although the subject

has remained of significant interest since the original work by the

Naval Research Laboratories. The subject of doppler ccintillation has

received little attention although interest in this phenomenon has

increased in recent years because of the development of pulse doppler

radar systems and the increased resolution capabilities desired.

1.3 Statement of the Problem

The evaluation of the performance of a radar system requires a

knowledge not only of the radar system hardware and characteristics,
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but also of the radar target. Radar system evaluations are generally

performed using probabilistic or statistical approaches, with perfor-

mance specified in terms like probability of detection, probability of

false alarm, and rms tracking accuracy (in range, azimuth and elevation

angles, and doppler frequency). Such an evaluation cequires statisti-

cal models of the EM scattering parameters which affect system perfor-

mance. The statistical characteristics of the EM scattering parameters

are, as mentioned in Section 1.1, dependent on the target and its

angular and translational motion. The objective of this work is to

develop techniques to determine these statistics. In particular, this

work is directed toward development of techniques to: (1) determine

the moments of the RCS and the azimuth and elevation errors, AZER and

ELER, respectively, and (2) determine the covariance functions for

these three parameters.

The work is divided into two basic phases. The first phase,

described in Chapter 2, is the development of a deterministic model of

the EM scattering from a target. The equations for the RCS and target

induced error signals are developed for an M-body target and then

applied to an ellipsoidal model of a target drone. The second phase,

described in Chapter 3, is the selection of important statistical

characteristics of the EM scattering and development of techniques to

compute these statistical characteristics. The characteristic

function method of computing these statistical characteristics is

derived for the discrete case and implemented on a digital computer.

A simulation was developed to provide a check on the general

accuracy of the analytic solutions. A comparison of the simulations

and analytic solutions is presented in Chapter 4.
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A secondary objective of this research is to identify the areas

where data or theory is inadequate to support the ultimate objective

of developing stochastic models of the radar scattering for use in

simulations of air defense systems. Many of these limitations are

identified as they are encountered, and all identifiable problem areas

are covered in the conclusions.
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2. ANALYTIC MODELING OF RADAR TARGET SCATTERING PARAMETERS

2.1 General

In this section the deterministic models for the scattering

parameters of interest are derived. These parameters are the target

induced effects which cause errors in the radar system, namely the

radar cross section (RCS), the azimuth error (AZER), the elevation

error (ELER), and the target phase (PHAS). The RCS is used here in

its conventional form. Glint, for the purposes of this research, is

defined as the linear errors, in meters, in the target azimuth (AZER)

and elevation (ELER) positions, referenced to the target range. The

target phase (PHAS) is defined here as the phase of the electromagnetic

(EM) vector reflected from the target as compared to an EM vector

reflected from a point scatterer located at the target center.

The approach used assumes that the target can be divided into

M different scattering elements located at fixed points in the target

coordinate system. The EM scattering from each element is determined

as a function of the aspect angles. Then, the scattering parameters

can be determined, as functions of the aspect angles, by vector

summation of the scattering from the M scattering elements.

Two primary coordinate systems (shown in Figure 2.1) are of

interest. One is the ground fixed coordinate system with the observing

radar at its origin. The azimuth (AZ) and elevation (EL) angles

normally used by radar systems are indicated as are the conventional
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TARGET FIXED COORDINATES

GROUND FIXED COORDINATES

Figure 2.1. Coordinate Systems
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polar coordinates. The x' coordinate is downrange, the y' coordinate

is cross range, and the z' coordinate is altitude. The position of the

target is given by (xo, YO, zo) or in polar coordinates by (Ro, 60,

(P0). The other coordinate system is the target fixed coordinate system

with the center of the target located at the origin. The x axis is

the longitudinal axis, the positive y axis is out the left wing, and

the positive z axis is up. The yaw, pitch, and roll angles, a, 0, and

y, respectively, are rotations about the z, y, and x axes, respectively

where a and y are defined in a right sense and p is in a lefthanded

sense. The angles e and p which are the polar coordinates of the radar

in the target fixed coordinates system are usually referred to as the

aspect angles.

The two coordinate systems are related by the following

transformations:

x t t3 2  t13

yt 1 y' + (2.2)

where

t =cos a cos - sin a sin siny

t12 - sin at cos P

t13 = cos a sinp + sin a cos sin y

t21 -- cosa sin sin y - sin a cos

t22 = Cos a Cos Y
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t 23 = COS a cos • sin y - sin a sin

t31 - " sin P cos y

t32 = - sin 7

t 3 3 = cos P cos Y. (2.3)

2.2 Scattering Parameters of M-Bodies

The modeling approach selected is based upon the work of Dunn and

Howard [281 and Ostrovityanov [24]. It is assumed that there are M

scatterers on the body, each of which may be aspect angle dependent.

The i-th scatterer is located at (xi, yi. zi) in the target coordinate

system and has RCS of Si. Both the location and RCS of each scatterer

are assumed to be aspect angle dependent, where the aspect angle

dependence permits the scatterers to b3 shadowed or disappear from

view. Each scatterer is assumed to be independent of the others, and

only single reflections are considered. This admittedly ignores such

phenomena as interior corners and ducts, but these are considered to be

of relatively minor importance statistically. Polarization sensitivity

can be included but the derivation of the scattering equations assumes

polarization independence, primarily for convenience.

It has been shown by Dunn and Howard [281 that glint computed by

taking the normal to the phase front is the same as the glint computed

by the ratio of the nonradial and the radial components of reflected

power. This is true for all currently used angle tracking systems.

The approach used here utilizes the Poynting vector representation

of the reflected power. The EM vector backscattered from each of the

M scatterers is computed and these are summed vectorially. The

Poynting vector is then calculated and decomposed into three orthogonal

components. The first component is radially directed from the target
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to the radar. The other two components are, for convenience, the

azimuthal and elevational components in the target coordinate system.

The radial component of the Poynting vector is related to the RCS and

the nonradial components are related to the glint errors. The results

for the scattering parameters are derived in Appendix A and are given

by:

M M

iul j~l

M M

Zs~ i ~ 7  fZcscicj (2.5)

M M

Z Z 'T flicos (ai-a) (2.6)i-IJl

E %ý -i sin ai

PHAS - arctani 1 (2.7)
Z, 'ý S'Cos aj

j=1

where e and e are the errors in the target coordinate system, a and

Sare the target aspect angles, and

47C (-xi sin0 cos p - Yi sine sinp - zi cos 8 (2.8)

f i = "X cos 9 cos cp - Yi cos 9 sin q - zi sin6 (2.9)

f2i =0 xi sin cp + Yi cos p. (2.10)

The e and e errors given in (2.5) and (2.6) must be transformed

to azimuth and elevation errors, AZER and ELER respectively, in radar

coordinates to account for the orientation of the target. Let
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sin e cos (p sin e sin (p Cos e

[D(e,p)] - cos e cos cp cos e sin p -sin e (2.11)

E sin P cos (P 00

Then, the azimuth and elevation errors are obtained from

[]0

AZER

E is a dummy variable, and [T"I] is [Tf] with the mean values of a,

P, and y substituted for a, P, and y. For 3traight and level flight

where the mean pitch and roll angles are zero

F1  0 o]

and (2.12) yields

AZER -

ELER - . (2.13)

In order to derive the Si and (xi, Yi' zi) of each scattering

element, the target is modeled by M ellipsoids.

2.3 Ellipsoidal Surface Model

It is assumed that the surfaces of the target can be approximated

by ellipsoids, as depicted in Figures 2.2 and 2.3 for a target drone

BQM-34A. Ellipsoids were chosen because of the rclative ease with

which one can find and describe the scattering from the specular point.

Each ellipsoid is described by its conjugate radii and its position

and orientation in the target fixed coordinate system. An associated
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Figure 2.2. The BQM-34A Target Drone

Figure 2.3. Ellipsoidal Model of BQM-34A Target Drone
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modulating function is defined for each ellipsoid which truncates the

ellipsoid, approximates the shadowing by the other surfaces, and

provides a relatively smooth transition into the field of view. It

may also be used to provide an empirical method of improving the fit

of calculated to empirical data. Each ellipsoid may be considered as

a point scatterer with RCS, Si, and location (xi, Yi, zi), determined

by the specular point [41, 42).

First a single ellipsoid located at the origin with its principal

k axes oriented along the Cartesian coordinate axes is considered. The

RCS of such an ellipsoid is given approximately by

S it R1 R2  (2.14)

where R1 and R2 are the principal radii of curvature at the specular

point (41]. The specular point is found by finding the point on the

surface of the ellipsoid having the same direction cosines as the

lines of sight.

Let

2 2 2
F(x, y, z) =L + b- + 1- 1 0 (2.15)

2 2+2 l0(.5
a b c

be the equation of an ellipsoid. Then the normal to the ellipsoid at

(x, y, z) is given by

2x + 2 2z (2.16)

so that the direction cosines of the normal are given by

cos 5x 2ar

(
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cos 8 = -Y-
Y b2 r

mz

cos: c5z2

cr

4 - b4 + (2.17)

However, the direction cosines for the line of sight are given by

cos 5x = sin e cosqc

cos 5 - sine sincp

cos 5 - cos 9 (2.18)

I -here e and T are the aspect angles of the ellipsoid given in its own

'(local) coordinate system. The ambiguity of the normal can be resolved

by noting that the outward normal must be in the same octant as the

line-of-sight. Thus from (2.17) and (2.18) the parametric angular

coordinates, us and vs, of the specular point are obtained as

vs = arctan I h tan 4

Sarctan tan e a cos cp + }sin2 c (2.19)

The product of the principal radii of curvature, R1 X R2, is

derived as in [411 by

[(F)2 IF~)2 + ~ 2J

R1 R2 =

specular
point (2.20)

where
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•2F •2F •2F 6F

2 2 •ýx 2 T xi -z 6x

6 2F 2F 6 2F 6F
x 

(2.21)
62 F 62 F 2 F 6F

6x~ Ty~z ;2 7z

6F 6F 6F0S0 ~

The application uf (2.20) to the ellipsoid (2.15) results in the

expression

2 c22 2

R1 R2 = a b 2 (xs + + (2.22)

where (x, Y zs) are the coordinates of the specular point and are

given from (2.16) by:

2a
xs = a sin u cos v - - sine cosq

s s p
b 2

Ys = b sin u sin vs .Psin sinrp

2
z =cCos u = S--cos e (2.23)
s s p

where

p /a2 sn2 0 cos2 b2 2 2 2 2p- asn co p+ sine sin2 cp+c cose

Consequently, the RCS of the ellipsoid may be found from (2.14) and

(2.22) to be given explicitly by

S=RR a b c (2.24)
4
p
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The results given in (2.23) and (2.24) for a single ellipsoid may now

be applied to each of the M ellipsoids, after the proper coordinate

transformations.

Consider now an ellipsoid which has its center located at

(xti, t zti) in the target coordinate system. A local coordinate

system for the ellipsoid is defined, with the origin located at the

center of the ellipsoid and with the coordinate axes coincident with

the principal axes of the ellipsoid. .Under these conditions the

ellipsoid is given by (2.15). The angular rotations from the target

coordinate system to the local coordinate system are defined as et and

qt' where cpt is taken first about the z axis and then et is taken about

the new y axis.

Let x, y, and z be the coordinates of a point in the target

fixed coordinate system, and let x', y', and z' be the coordinates of

the point in the local coordinate system. Then the coordinates of the

point are related by the following transformation:

x' x - ti

y' [T] ( - (2.25):•~ • ti

I Z' -ZtL J LZ t
where

't cos Pt cos et sin •t cos Ot -sin et

[T] = -sin qt cos Pt 0

cos ct sin Ot sin Pt sin et cos Ot

p Let e and (p be the aspect angles of the target and (xo, Y0 9 Zo)

"be the coordinates of the point on the unit sphere with these angular

coordinates, then
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[ 0 sin 0 cos q)l

YO = sin 0 sin (2.26)

[ocos e J
If r, s, and t are the coordinates of this point in the local coordi-

nate system of the ellipsoid, then

r[ sin e cos cp
c [T] sin 9 sin p (2.27)

hence the local aspect angles can be found from

cpj = arctan( )

= arctan (2.28)

The octant in which the angles are located must be determined by

consideration of the signs of r, s, and t.

2.4 Computational Procedure

Let e and cp be the target aspect angles; 9i and coi be the local

aspect angles of the i-th ellipsoid; eti and cti be the angular trans-

lations from the target coordinate system to the local coordinate

system for the i-th ellipsoid; (xti, Yti' zti) be the location of the

center of the i-th ellipsoid; (xi, y!, z!) be the coordinates of the

specular point in the local coordinate system of the i-th ellipsoid;

and xi, Yi' and zi be the coordinates of the specular point of the

i-th ellipsoid in the target fixed coordinate system.

The starting point for each computation is the set of target

aspect angles e and T. For each of the N ellipsoids, the following

procedure is used:



27

(1) Transform from target aspect angles to local aspect angles

using (2.28).

(2) Determine the location of the specular point in the local

coordinate system using (2.23).

(3) Determine the RCS, S,, of the specular point using (2.24).

(4) Transform the position of the specular point from local

coordinates (xi, yl, zj) to target coordinates (xi, yi' Zi) by

Ix

(5) Determine the magnitude of the modulating function G(i) and

the value of the RCS to be used in (2.4) through (2.7) by

S i - G(i) Si

The values of the scattering parameters for the aspect angles e

and cp are found by applying (2.4) through (2.7) where the location

(xi' Yi' zi)z and RCS, Si, of the i-th scatterer are determined as

described above.

J •2.5 Numerical Example

The results of the last three sections will now be applied to

the special case of the BQM-34A Target Drone. Figures 2.2 and 2.3

depict the actual Target Drone and the ellipsoidal approximation. The

ellipsoidal model in this case consists of eight ellipsoids. The

configuration (as defined by the conjugate radii), location (xt, Yt.

zt) and orientation (et, (t) for each ellipsoid is given in Table 2.1.

The modulating functions for these ellipsoids are given in Table 2.2.
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The procedures derived in Sections 2.2 and 2.4 are used to compute

the scattering parameters as functions of tb- aspect angles, 6 and P.

Typical results are shown in Figures 2.4, 2.5, and 2.6.

Figure 2.4 is the calculated RCS for L-Band plotted in decibels

referenced to 1-square meter (RCSdBM) versus yaw angle for zero roll

and zero pitch. Zero yaw angle corresponds to nose-on, 90 degrees

corresponds to broadside and 180 degrees corresponds to tail-on. As

compared to measured data, the calculated RCS in the angular regions

from 0 to about 35 degrees and from about 140 to 180 degrees is low.

In the headon region the discrepancy is about 15 decibels and in the

tail-on region about 10 decibels. These discrepancies are due largely

to two factors. The first factor is the simplicity of the modeling

approach used. The second factor is the transparency of certain parts

of the target drone. The analytic model ignores the engine intake and

exhaust ducts thereby ignoring significant scattering over certain

aspect angles. The data on which the comparison is based were measured

on a target drone with considerable transparent portions. In addition

to the radome, the front cowl forward of the engine is transparent.

Therefore, the RCS within about 35 degrees of nose-on is the RCS of the

bulkheads, forward engine structure, autopilot and electronics packages,

and other components. The end of the tail cone which houses the

recovery parachute is also transparent. These factors make a comparison

extremely difficult. However, the lobing structure is approximately

correct as is the broadside RCS.

Figures 2.5 and 2.6 are the azimuth and elevation errors, AZER

and ELER respectively, expressed as the linear error at the target.

The conditions are identical to those for Figure 2.4.
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3. THE STATISTICAL PROPERTIES OF THE SCATTERING PARAMETERS

3.1 General

The primary objective of this research has been to develop tech-

niques for computing the statistical parameters of a radar target, in

particular an aircraft type target. These data can be used to

generate a vector stochastic process representing the radar scattering

parameters of the target which can be used in system simulations and

evaluations. The data may also be used in the design of optimum

filters for tracking systems.

Section 3.2 derives the statistics of the aspect angles using

approximation techniques. Section 3.3 applies the aspect angle

statistics to the analytic scattering model developed in Chapter 2

to derive the statistical properties of the scattering parameters.

3.1.1 The Statistical Properties Under Investigation

The available techniques for obtaining a dynamical repre-

sentation of a stochastic process require that the probability density

function and autocorrelation function be known, and that these functions

satisfy certain criteria. These techniques can be generalized to N

dimensions, when the matrix of covariance functions is known. One

general approach requires only that the probability density function

have finite variance and that the covariance functions be written as

sums of exponentials.
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The RCS, AZER, and ELER are complicated nonlinear functions o!

the aspect angles as indicated in Chapter 2 so that the conventional

transformation of variables approach to obtain the probability density

N function is impractical if not impossible. Therefore, other properties

of the probability density functions must be investigated. The most

descriptive properties which can be determined are the moments. A

complete description of a probability density function, in terms of its

moments, requires that all of the moments be known. For a Gaussiar

density, all of the moments can be ecpressed in terms of the mean and

variance. These two moments are not sufficient, in general, to

characterize an unknown density function. However, computation of all

moments is not a practical undertaking so some compromise must be made.

A reasonable compromise appears to be the first four moments. The

third moment measures the skewness or asymmetry and the fourth moment

measures the shape of the distribution as compared to the Gaussian

distribution.

These moments can be used to approximate the fit of an unknown

probability density function by use of known techniques including the

use of Gram-Charlier series [57] where the unknown density functions

do not differ markedly from Gaussian density functions or those

derivable from Gaussian density functions. Another technique is

described by Wragg and Dowson [581 for density functions on [0, c).

The statistical properties of the scattering parameters under

investigation, then are the first four moments and the matrix of

covariance functions. Since it is not possible to assign probabilis-

tic properties to a target trajectory, the statistics to be derived are

all for a given trajectory. Therefore, the moments and the correlation
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functions are defined as conditional expectations given the flight

path in the ground fixed coordinate system.

3.1.2 The General Approach

The time history of the scattering parameters of an air-

craft cannot be represented by a stationary process. The means and

variances of the scattering parameters are time-varying functions of

the aspect angles e and cp, which are in general functions of the

trajectory and hence of time. The relationship among the aspect angles

and the target position and attitude in the ground fixed coordinate

system aire given by

sin e (t) cos cp(t) [-sin e 0(t) Cos (P0(t)
sin O(t) sin cp(t) = [T(t)] -sin e0 (t) sin cpo(t) (3.1)

cose(t) -cos e(t)

where [T] is given in (2.3).

The target coordinate angles 0o(t) and r 0 (t) describe the target

position in space as measured in the ground fixed coordinate system.

The Euler angles, a, p, and y, appearing in [T] are functions of the

target motion, making the [T] a function of time for a known

trajectory. Let 3(t), T(t), and y(t) be the Euler angles corresponding

to a given target trajectory (position, velocity, and acceleration).

If these are substituted in [T] in (3.1) the resulting a(t) and c(t)

are then purely deterministic functions of time. However, in general,

the Euler angles a, 0, and y contain a stochastic component due to

perturbations in the motion, wind, vibrations, etc. For simplicity

it may be assumed that.;.the stochastic components of a, P, and y are

additive with zero mean and exponential autocorrelation function.
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Therefore, a(t), P(t), and 7(t) are assumed to have time varying

means n(t), R(t), 7(t) and autocorrelation functions.

R~ 2 e-kIt2-tl(
Rv(tlt t 2) = 7(tl) (t 2 ) + 2 ev , (3.2)

= a, •, y

The perturbations have generally small time constants as compared to

the time constants of aircraft trajectory. Consequently, a(t), p(t),

and y(t) may be considered to be wide-sense stationary for It 2 - t11

small enough. Now e(t) and c,(t) in (3.1) are given by time varying

nonlinear transformations of a, P, and y. Since the time constants of

the stochastic components are small compared to the time constants of

the trajectory, and hence of the transformation, it can be shown that

O(t) and (p(t) are therefore time varying random processes whose means

and autocorrelation functions have the form

E(e(t)) = o() (t)

4E(rp(t)J - cp~t) -(t) (3.3)

R8  t1 t ) 0(t1~ 2) + ae(tl)c'O(t 2')Pe(t2 -. t1)

RP ( 1 1 t2) - W(tl)T(t2) + (',(tl)aF(t 2)P,(t2 - ) .(34

Here, it has also been a-., ,ed that the stochastic perturbation of the

Euler angles are relatively small. Consequently for a given flight

path, O(t) and cp(t) have time varying means and variances. Further-

more, if It 2 - t1l is small, then their covariance is approximately

I2
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c(tl' t2)~ a(tl)P(t2 - tl)(35

while for large Jt 2 - tlj they are uncorrelated. Similarly, for

It 2 - tl1 small enough that P(t 2 - td) is not negligible, e(t1) -e-(t 2 )

and P(t1) qP(t 2 ). Hence, they are wide-sense stationary for suffi-

ciently small time intervals.

The approach to estimating the aspect angle statistics is to

expand the implicit expressions for e and T contained in (3.1) about

the deterministic values 0 and cp which are obtained by substituting

a, T, and y into (3.1) for a, P, and y. The order of the approxima-

tion will be reduced to the minimum acceptable level.

3.2 Aspect Angle Statistics

The derivation of the statistical characteristics of the aspect

angles, e and r, requires a knowledge of the target position in the

ground fixed coordinate system and the target motion in each of its

6 degrees of freedom. The translational motion is specified in the

ground fixed coordinate system. The angular motion is more difficult

to define but relates the angular position of the target fixed

coordinate system to the ground fixed coordinate system. Neglecting

any random angular motions it is assumed that the target flies with

its longitudinal axis, x axis, coincident with the velocity vector

and its vertical axis, z axis, opposing the combined acceleration due

to gravity and any maneuvers other than longitudinal acceleration.

(This approach clearly ignores aerodynamic theories related to flight

[59] but permits a reasonable analysis without requiring a detailed

aerodynamic model of the target.) The yaw, pitch, and roll angles,



39

a, •, and y respectively, required to go from axes parallel to the

ground fixed Cartesian coordinate axes to the target fixed Cartesian

coordinate axes are shown in Figure 3.1.

Let x', y', and z' be the Cartesian coordinate axes of the ground

fixed coordinate system and x, y, and z be the Cartesian coordinates

of the target fixed coordinate system. As defined previously, (1) the

x axis is the longitudinal or roll axis of the target with the velocity

vector pointing in the positive direction; (2) the y axis is the pitch

axis; and (3) the z axis is the yaw axis. The yaw, pitch, and roll

angles (Euler angles), a, P, and y respectively, are defined such that

a and y are conventional right-handed angles, but p is left-handed.

Let x*, y*, and z* be the intermediate axes during the sequence of

angular transformations from one coordinate system to the other. The

transformation between coordinate systems is unique only when the order

of the angular transformations is defined. In this work, the order

is defined to be p, y, and a, in that order. Figure 3.1 depicts the

angular coordinate transformation from the ground fixed coordinates to

the target fixed coordinates. The first rotation is p about the y'

axis, the second rotation is y about x*, the intermediate x axis, and

the third is a about the final z axis.

The aspect angles are related to the target position and motion by

(3.1) where [T] is defined in (2.3). If the a rotation is factored

out of p, it is noted that a is additive to (p resulting in a simplifi-

cation of the algebra.

cos a sin a 0 cos 0 sin
i (3.6)

[T] = -sin a cos a 0 -sin • sin y cos y cos • sin (

0 0 1 -sin cos y -siny cos cosY
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It is possible now to find an exact analytic solution for the

joint probability density function for e and q, as given in Appendix

B. Clearly the equations in the right hand matrix are nonlinear and

do not permit a visualization of the results even when the density

functions for a, 0, and y are given. Numerical results can be obtained

by implementing standard transformation of variables techniques on a

digital computer. An even more formidable limitation exists. Although

it is possible to obtain the moments by numerical integration, it is

not possible to obtain the covariance functions for e and p which are

necessary in computing the covariance functions of the scattering

parameters.

The aspect angles e and cp can be expanded in Taylor series about

their quasi-means V(t) and '(t). For notational convenience, the

time dependence of the means and variances is being dropped from the

notation for the rest of the analysis. If variances of the random

components of the Euler angles are sufficiently small, e and C can

be approximated by the first two terms of the Taylor series expansions.

+ as+--YS + PyI ,7 gv.5;

1 2, 1 27
62 + s 7 2

P-- ', (3.7)
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2e 2 0

+ 02s + L- -L (3.8)

where

8a s --a '

By use of implicit differentiation and algebraic manipulations the

partial derivatives can be shown to be:

6e = cos 7 cos (3.9)y (7
2I

2e = sin 27 sinq + -(l + cos2y)cot6 sin cp•2 22 (31o0)

- sin CP (3.11)

S~2O
-I

2 0cot 2 cos (3.12)

C)
2

Cos c (sin- y cos ycot 0 sin cp) (3.13)
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si- sna - cos cot e sin (3.14)

AD sin 27y coto ýCos + I sin n2cp(1 + cos 27 )(1 +2 cot )

1 ,"(3.15)

, cos qcote (3.16)

2- 1 ~2-
2 2 sin2cp (1+2 cot 6) (3.17)

=sin sin cot - cos y (cos 2  + cot cos 2

S'Y (3.18)

The accuracy of these expansions may be examined by obtaining the

statistics of the resulting series:

E(e) e + 12a [sin 2 -Y sin Z + (1 + cs2 co 0 sn2 p1

!2 2 ",

+ 2 cot 0 cos C (3.19)7

1 [ 2
afp Ip +in 27 cot e cos

+1 . sin 2 (- + cos 2 1 (• .+2 cot

12Y sin 2o (1+ 2. cot e (3.20)
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2. E (eU)2~ o1 co. 2  cos 2 - 2 2

+ a • Cos. 2 (sin + -cos cots• sin s 2

+ 2+t2•s 0 o 2~ 2 (3.21)

2'2

2 sin- p+ c(1 + cos 2 7) t2

+02 cot c•sin+ cots 2 sin co

+ o ' (o74si2 2" + cot 2 cost2 e.2

14 2 2
+~ a7 sin e ~+cos ep (3.22)

0e~cp Pe• E((8 - e')(cp " vp)} o• cos -9' COs cp
s - C 2 sin 22 cot

x E(-sin• - sin+ a( + cos2y p

.,.-• ; s,..,•; ,,,,. .. ,.<,., ,,,,7>cot • ,,'sin ]
+2ct + •sin2 a (1 + cos 2q)(1 + 2 cot 2 -e

2 2 2 C 1

o o7 cos y (sin T + coB e cot e sin )

x [.,,in, 2 ,,.,t coo,+ sinos 2(cop (1 + cos 2 COB 2 c2)]

1 4 ot co no (1 + 2 cot2 , . (3.23)

1 2

I

X£-sny-csyctesi )+- i o

.10 i i 1 o o 0sn
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Some knowledge of the statistics of the Euler angles is necessary

in order to establish bounds on the errors, and hence evaluate the

accuracy of the expansions.

There is, unfortunately, a lack of published or available data

on the angular motions of an aircraft in flight. An aircraft is

designed to fly and perform a mission safely. Only those flight

characteristics which affect safety or the ability to perform the

specified mission are investigated and reported. The small scale

random motions of interest here are generally ignored. The pilot, or

autopilot, can handle these as a minor part of the normal flight

activities. The coupling among yaw, pitch and roll, especially when

flying with the autopilot operating, is familiar to many. It would

seem reasonable, based upon this and other factors, to expect that the

quasi-random angular motions would be similarly coupled. However, the

lack of data make it impossible to determine what the coupling or

covariance function should be.

It is necessary to assume some probability and covariance

functions for the Euler angles. The most useful family of probability

density functions for angles is that used by Viterbi [60]. It is

given by

f e2 (s Cos 0) , 0 5 0 5 2A (3.24)

where 0 is the angle and s is a parameter related to the variance of

the distribution. For s = 0, the density is uniform over the range

of -9 to 1, and for s = =, the density is a delta function at 0 - 0.

SThis density is closely approximated by a normal density for s >> 1,

as shown by Viterbi. Due to the lack of published data, it is assumed
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that the random angular motions of the target axe independent normal

(Gaussian) processes with exponential autocorrelation functions. This

is an arbitrary and perhaps simplistic approach, but represents a

practical and mathematically tractable approach. The choice of a

normal process is based upon the fact that the random motions are

small. The only justification for the exponential autocorrelation

function is mathematical convenience.

For a basically stable aircraft under cruising flight conditions,

standard deviations of the Euler angles of less than 100 milliradians

or about 5.7 degrees seem reasonable. Autocorrelation time constants

on the order of 1.0 to 5.0 seconds also seem reasonable.

Without loss of generality, but in the interest of simplifying the

algebra, it is assumed that the aircraft is flying a rectilinear flight
path. This implies that T = 0= 0, and that e = and • = 0 + .

From practical considerations, the area of prime interest in the

elevational aspect angle 0 is for g/2 -5 e 5 39/4. In this region

-1 5 cot e 5 0. With this information it is possible to evaluate the

general accuracy of the Taylor series expansions of 0 and -., (3.7)

and (3.8). Equations (3.19) through (3.23) can be w:itten as:
2 2sin 2 2 -)i n1 2c 2 cos Cp (3.19A)

S= •+±•sin 2 m0 + 2 cot2~)o - o2) (3.20A)
2 22 2 2 2 122

0=olco " + .7 sin 2 rp + 2 P° ct a (3.220A)

Ce a pCos ý + a Ysin 1P+4 pa Y co 6sin 2 CP

2-(04 sin4 ý + 4 4 )
+ cot2 en csi a Cos (P (3.21A)
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2 2 a + cot2 (a s in 2 " +C 2 cos2

+ a Cos cot e cos 2q9

1+ s 2 (1 + 2 cot 2  ) ( + 4) (3.22A)

oeOc, sin 2 cp cot 2)

2 e)2 -, 22 (4 sin 4 2'-
+ cot sin 2 CP 1 + 2 cot o s - a cos2

S1 2 2 .. CO2 Co2~)
"W7, sin 2Z cot e os "$ + cot 0 cos 2 . (3.23A)

By inspection, it is clear that the second order terms generally add

less than 0.1 sup (a,, a7) to the means and standard deviations of the

aspect angles. First order (linear) approximations will be sufficient

for this analysis. The following equations will be used in the

computations later in this chapter.

e -eO+ s cos cp+ 7 sincP (3.25)

O "'0 + a- " s cot eo0 sin m + 7s cot c0 Cos • (3.26)

where n =cn + a . The means and covariance functions of the aspect

angles are given by:

e = (3.27)

0+ a (3.28)

2 2 -k3• 2 2 -k
it t Cos e + a sin e (3.29)

/ C lt 2 ka¶ 2o 2 2..

Cc 1, t2) eaa e + a2 cot2 e sin 2 e

2 -k "r
2 2 20c -e

+ a7~ cot 00cos pe (3.30)
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Ce (tit t 2  = Isin2 • cot e0  1 2 e7  - cia ek) (3.31)

where T - it2 - tlj and ka, kP, and k are the inverses of the time

constants of the autocorrelation functions of a, 0, and y,

respectively. The linearization also implies that the joint density

function of e and cp i,3 approximately Gaussian.

3.3 Statistics of tlhe Scattering Parameters

3.3.1 Derivation of General Approach

The previous chapter and previous sections of this chapter

have developed the necessary background and inputs to the derivation of

the statistics of the scattering parameters. The following development

holds true for all of the scattering parameters, so only the RCS will

be mentioned. The application to the other scattering parameters .will

be made when appropriate.

As mentioned in Section 3.1, it is not possible to obtain the

probability density function for the RCS using conventional transfor-

mation of variables techniques. Therefore, the first four moments of

the probability density function and the covariance functions will be

derived.

The characteristic function approach is to be used in the

derivation of the expectation as follows:

1 f A(u,v) E e1J(U+ vy) dudv
(27t) I

1 2 ff Auv) 0e (pu, v dudv (3.32)
(21)

i ,,, ,; .. . . . .,..,...• • •,,, .. . •. ... ,.,,. . . . . . . .. " • •• • .'' ,•• - i~'`:•'. Dt -• • • . . .. .
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where

A(u, v) "f s(e,') e-j(uo+ VCP) de d(p (3.33)

is the Fourier transform of S(e,cp), and is the characteristic

function of e and cp. Similarly, for higher order moments, the

expressions become

E Sr - E 12ir ( A (u, v) ej(u e+ vcP) dudv(2c) 2

(~2r ff f A (ui v) ... A u2  v4 (u1 +..
(2n) ss s.<.u.ff ,> v(2, v2 (,

"+ 'r' v 1 + . . .+ v, X dudV1  • u dV (3.34)

S~andandE (,•S 1  ()s:(2 - (,[e(t,), cl set:), p(Pt2)J

4 f f~ f fJ Al~ulvi) A:2 (u2 ,v2) 0e, 2.~ (ul.vl~u2'v2)
7 " (21r)

x du1 dvI du2 dv2  (3.35)

{Thus, the moments and the correlation functions of the scattering

parameters can be computed, at least in theory. From a practical

point of view, however, this approach appears to have the same diffi-

culty as determining the densities using the transformation of

variables. The digital computer makes the computations of the moments

and the covariance functions possible.

The procedure used in the computational process is s basically to

reduce the integrals to suamtions using approximation techniques.

The general steps are:
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(1) Compute the Fourier integral A(u, v) in (3.33).

(2) Compute the characteristic function 0 e,(uv) which for the

assumption of a jointly Gaussian density for the aspect angles is

given by

(u'v) e(#u + ýV)e- 2 k au~ + 2 Pe ,(a apuv + a~pv)

Spe

(3) Compute the integral (3.32).

There are practical considerations which influence the detailed

procedures, which will be discussed as they are encountered.

It was shown in Section 3.2 that the conditional variances for e

and T are small. It is reasonable, therefore, to consider only the

portion of the e - ýp plane having a reasonable probability of

2 2
occurring. Let e and T be the conditional means and Ie and a be the

conditional variances of e and cp. Let M be a positive integer. Then

the area of the plane having coordinates such that e - M ae < e -<

+Mae and - Ma ( <5 <5 + M a T will be used for the actual

computations.

Now, let ST(e,cp) be a periodic function which is identical to

S(O, cp) in the area defined above, i.e.,

M ae - 5 e m e -m M O , M:5 (p - (P - M a (P

and
ST (e + 2kM e, (p + 2M Ma) = ST(ec)

for k, I integers.

The periodic function ST(e,cp) instead of S(e,cp) will be used in

computing the expectations. A bound on the resulting error in using

a finite M is found in Appendix C. A reasonable compromise seems to

• 'iA ",'- ,Nm m m ' I• i"•I '• •I " "" •"
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be M = 4 if e and q are assumed to be Gaussian. Since ST(e'(6 ) is

periodic, it can be represented by its Fourier series.

W 00 J (muO + nVO•

ST(e,cp) = A(m,n) e() (3.36)
m=-0 n=-w

where

and

v 0 =M

Substitution of (3.36) in the expectation results in a discrete version

of (3.32).

ES E Z Z A (m,n) enVO)

Z Z A(mn) 0 (mu 0 , nv (3.37)
m=-m n=-m P(

so the double integral in (3.32) becomes a double summation. The only

approximation made at this point is the substitution of ST(e,cp) for

S(e,(p) as mentioned above. In practice only finite number of terms

will be used in the summation (3.37). A bound on the resulting error

is also discussed in Appendix C.

Similarly (3.33) and (3.34) become, respectively,

E s r = ... A ml,nl) . A ,n
m=-vo n=-o m=-oo n=-co

X e'T il v00  ni (3.38)

S.. . . .. . .. . . . nm .. .( U
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E SIS2 =Z Z Z n A 1mli,n) A 2(mn 2 )

X OI(,•m,92 I2(m1Uo 1 m2U0, nlvo' n2v0) "

(3.39)

Now, it is necessary to obtain the Fourier coefficients, A(m,n).

These will be estimated using the Fast Fourier Transform.

3.3.2 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a digital computer

algorithm for fast and efficient computation of the Discrete Fourier

Transform (DFT)[61, 62]. The DFT is defined by

N-1
1A Z x exp 2ir (3.40)r N MO n~x Nn=0 n

where A is the r-th coefficient of the DFT and x is the n-th sampleSr n

of the time series xn which consists of N samples. The inverse

transform is given by

N-1
x n F, Ar exp( V (3.41)

n= 0

One of the consequences of using the DFT is that both the time

series and the coefficients of the harmonic frequencies can be defined

for all integers (positive and negative). This results in the familiar

periodic form

Ar r A+N A r+2N

x n X -*N x r -
SX~n = n+N = n2N - . .

The approximation of the Fourier Transform or Fourier Series by

by the DFT is not without its pitfalls and hazards. A distortion due
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to aliasing occurs in the frequency domain for real functions which

are not sampled at sufficiently high rates [62, 63].

In addition to the aliasing error, there is an error due to the

fact that the FFT acts like a bank of filters, each with a sin Nx/sin x

response, where N is the number of samples used (Appendix C). Let Br

be the r-th Fourier series coefficient of a periodic time function,

xT(t) = x(t), 0 -5 t -< T, then the FFT estimate, Ar, of Br Is given by

1 j(m-r) ( sin(m- r)-
A Z B e -Ar N = -
SNm=- i sin(m- r)A

wN

= Z Br+iN (3.42)
i=-,o

The error in estimating the Fourier transform of a non-periodic

function due to the "sidelobes" of the filter is called leakage [64].

The replacement of x(t) by its periodic version xT(t), as mentioned in

the previous section, reduces this error to the error introduced by the

harmonic components B outside the unambiguous range of A * This error
m r

is due to failure to satisfy the Nyquist sampling rate for the function

being analyzed. In the work here, the sampling rate is sufficient to

make this error insignificant.

The DFT and FFT, can be generalized to two dimensions. The two-

dimensional DFT is defined by

1 N-1 N-1 2-2c j(rm+ s+n)Ar's Z - X exp N (3.43)
r Ns r n0 mN

where Ars is the coefficient corresponding the r-th harmonic in one

dimension and the s-th harmonic in the other dimension, and Xmn is the

m-th by n-th sample of x. In this case there are N samples in each
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dimension of x and A. Just as in the one dimensional case, Ars and

X can be defined so that they are periodic functions, but in each

dimension, i.e.,

A = A = At+~ = A+N

Ar,s r,s+N r+Ns r+Ns+N "

x = x =X+N =xN
Xn m,ni-N n*N,n mI-,n+-N

The inverse transform is defined by

N-I N-i '21r(rm+ sn)
x =Z Z A exp N (3.44)
m'n r=O s=O r,

The two-dimensional FFT is used to obtain the coefficients necessary

to compute the moments and covariances in (3.37), (3.38), and (3.39).

The characteristic function is computed directly by assuming that e

and cp are jointly Gaussian random processes.

3.3.3 Practical Limitations

A slight regression is in order at this point to aid in

visualization of the problems encountered in actually implementing

these equations. Equations (3.37), (3.38), and (3.39) represent a

rather significant problem in terms of the capacity of a computer,

i.e., in terms of memory capacity and number of operations required.

By proper choice of the origin, the characteristic function can be

made a real function. The coefficients of the two dimensional trans-

form, however, are generally complex functions. If N = 128, then

there are 16,384 real numbers required for the characteristic function

and equally as many complex numbers required for the A in (3.37). In

terms of memory requirements, the characterisitic function requires

16,38410 = 40,0008 words in memory and the A requires 32,76810 =
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100,0008. This represents a significant portion of the resources of

even a large scientific computer. Even more significant, however, is

the number of operations, or iterations implied by the multiple sums.

Assume that (3.37), (3.38), and (3.39) are to be implemented as

written, which is to say by brute force. Equation (3.37) would

require 16,384 iterations, (3.39) would require 268,435,456, and (3.38)

rwould require (16,384) where r is the moment desired. If each

iteration required 1 microsecond (an optimistic estimate), a second

moment would require about 268 seconds, clearly an unreasonable

length of time for one number. It is possible, however, to

significantly reduce this time, but higher order moments are clearly

beyond consideration using this approach.

It is shown in Appendix C, that for the data used here, the size

of the arrays required for the Fourier coefficients can be reduced by

a factor of approximately 4. This means that the number of iterations

required for (3.37) is also reduced by a factor of about 4. The

reductions are more significant for (3.39). The four-dimensional

characteristic function requires only about 1/16 of the original memory

requirements and only about 1/16 as many iterations are required.

Further reductions in computation time are possible due to the rate at

which the characteristic function converges toward zero.

The third and fourth central moments are also desired to

characterize the probability density functions. These are more

appropriately calculated using numerical integration techniques. Use
!2

of numerical integration provides the moments by using only N2

iterations. For rectangular (Euler) integration, the moments are

computed by
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Sr) N-1 N-i
E(S~ s = , sr(n0 , 1 ) f (PicB, nzL) Ae bp (3.45)

where
2Mco

AO MeN

and
2M,

AT- N

and where the coordinates have been shifted appropriately. The first

two moments computed using rectangular integration have been compared

with those computed using (3.36) and (3.38) with excellent results.

3.3.4 The Computation of the Statistics

The previous sections of this chapter have developed the

techniques for the computation of the statistical characteristics when

the aspect angles are joir.cly Gaussian random processes and the

scattering parameters Fre known. These techniques will now be applied

to the scattering model developed in Chapter 2.

The application to the momenits and the covariance of the radar

cro-- section, S, has already been discussed in Section 3.3.1. The

azimuth and elevation errors given in (2.5), (2.6), and (2.13) will

now be discussed. Consider (2.5), (2.6), and (2.13). The azimuth and

elevation errors, AZER and ELER, are obtained by dividing the nonradial

components of power by the radial component of power. This means that

the correlation or covariance between RCS and AZER or RCS and ELER

will, in general, be small since AZER and ELER are bipolar functions

with small means. In fact

E S xAZER E{ Z v'TSJ f2i cos( Ei- I)}M(3.46)
i=l J1 

J

.......
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ESXELER} E{ 7,Z f1  Cos C~i a.i)) .(3.47)

Therefore, more meaningful variables are the nonradial components of

normalized power instead of AZER and ELER, i.e., the numerators of

(2.5) and (2.6), namely
M M

iZ ZJ~ /--,C f cos~Xa - a.) =S x ELER (3.48)

M M

2 vlJ=. f 2i Cos(iaj) = S x AZER . (3.49)

The statistics of these two functions and S have been computed for

a number of different conditions. Sample points on a straight and

level flight were selected and combinations of the variances and time

constants of the Euler angles were used to examine the moments and time

constants of these scattering parameters.

Figures 3.2, 3.3, and 3.4 are computer plots of S, el, and E2'

respectively, for the region of the e - c plane for 1.5677 - e < 1.7317

and -0.28241 .5 -5 -0.12131. These data represent a region of ±4a

from the mean in each direction for e = 1.6497, 713 = -0.20186, ae

0.02050, and a = 0.02014. If the variances are reduced by 1/4 these

data represent a region of ±8a. Table 3.1 contains the moments of the

scattering parameters, S, cl, and E2 for the two different conditions.

It is clear that the moments of these scattering parameters are highly

sensitive to the statistics of the aspect angles.

Chapter 4 presents data from a number of sample points on the

flight path with different sets of conditions on the Euler angles.

The results of the analytic solutions are compared with the results

of simulation to verify the techniques derived in this chapter.
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4. COMPARISON OF ANALYTIC SOLUTIONS AND SIMULATIONS

4.1 General

A straight and level incoming flight path with a small crossing

angle waF selected as being typical of the conditions of interest.

Three sample points on this flight path were selected at which compu-

tations of the statistics of the scattering parameters were to be

calculated. Figure 4.1 depicts the flight path and the sample points.

The coordinates of the three sample points are (30, 10, and 2.5 km),

(20, 4.238, and 2.5 km), and (10, -1.524, and 2.5 km). In order to

investigate the sensitivity of the scattering parameters to the

aspect angle statistics, three different combinations of Euler angle

statistics were applied at each sample point, and the resulting aspect

angle statistics were computed analytically and by simulation.

Taile 4.1 contains the data on the resulting aspect angle

statistics used for each run. Figures 4.2 through 4.10 show the

scattering parameters for each of the three sample points as functions

of the aspect angles. The limits on e and cý are ±4a for the

largest values of a0 and a at each sample point. Figures 4.2 through

4.4 represent S, Eli and E2 at sample point 1; Figures 4.5 through 4.7

represent S, Eli an,' t at sample point 2; and Figures 4.8 through 4.10

represent S, El, and E2 at sample point 3.

4.2 Simulation Results

A simulation program 'is been written which performs a Monte Carlo

simulation of the time history of the EM scattering. The simulation
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uses the same assumptions and models that are used in the analytic

solutions, except that the angular transformation is not linearized

about the mean aspect angles. The simulation is fairly general in

that the flight path, velocity, random motion statistics, and sampling

interval are input variables. The output data are 2048 time samples,

taken at 50-millisecond intervals, of each of the scattering parameters

and their statistics. The aspect angles statistics are also available

as output data. The simulation permits an investigation of many

characteristics not conducive to analytic solution. For example,

by changing the velocity it is possible to investigate the limits the

flight path and flight characteristics place on the assumptions used in

Chapter 3 regarding the wide-sense stationarity of the aspect angles.

Figures 4.11 through 4.19 are the outputs of the simulation for

run 6. Figures 4.11 through 4.13 represent S, El, and E2; Figures 4.14

through 4.16 represent the autocovariances of S, cl, and E2; and

Figures 4.17 through 4.19 represent the cross-covariances of S and El,

S and c2, and E, and ,2"

4.3 Data Comparison

The statistics of the scattering parameters have been computed

analytically and from simulations for each of the runs defined in

Table 4.1. The means and variances of the aspect angles are given for

the linearized solutions and the simulations to indicate the general

level of errors encountered. Tables 4.2, 4.3, and 4.4 compare the

statistics of the scattering parameters for the nine runs actually

made. Figures 4.20 through 4.37 cuýapare the covariance functions for

runs 1, 6, and 9.
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It is clear from the data that the statistics of the scattering

parameters are very sensitive to the statistics of the aspect angles.

Some of the differences between the analytic results and simulations

can be explained by the apparently small differences in the means and

variances of the aspect angles. More important than the differences

are the similarities between the sets of data. It indicates that the

general approach will permit the analytic determination of the statis-

tics of the scattering parameters with some degree of accuracy.

The sensitivity of the scattering parameters to the statistics of

the aspect angles emphasizes the need for actual data on the flight

characteristics of aircraft. This may become even more important when

4 higher frequencies are used since the lobing structure of the

scattering parameters increases with increasing frequency.

4,

.i

*'

( !

F

J Il =
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SAMPLE POINT 1
130M0, 10000,250W)

SAMPLE POINT 2
(20 00 0, 423, 25W0)

SAMPLE POINT 3
(10000,-1524,2500)

FLIGHT PATH

Y

Figure 4.1. Target Flight Path in the Ground Fixed
Coordinate System
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Figure 4.2. The Radar Cross Section, S, at Sample Point 1

0.4-

0.2--

-0.1161

-0.2877•
1.5376 1.6497 1.7618

Figure 4.3. Elevation Component of Nonradial Power,
El at Sample Point 1



67

0-0

-0.11

-0.03

-0.0

1.5376 1.6497 1.3718

Figure ~ a 4..ThSadare CrossSetin 1 ,a apl o



68

0.06-

0.03-

-0.08

-0.31474

1.5471 1.6925 1.8378
0

Figure 4.7. Eeatimut Component of Nonradial Power,E
at Sample Point 2

V0



69

3.58-

2.38-

S

1.19 -

-0.5

0

I
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72

0.06 - - - -

-0.05

0 50 100
TIME (sac)

Figure 4.12. Elevation Component of Nonradial Power,
Cl Versus Time
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Figure 4.14. Autocovariance of S Versus Delay Time
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Figure 4.15. Autocovariance of E Versus Delay Time
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Figure 4.16. Autocovariance of E Versus Delay Time
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• ~5. SUMWARY, CONCLUSIONS, AND APPLICATIONS

5.1 Summary and Conclusions

The objective of this research has been to develop techniques for

the analytic calculations of the statistical characteristics of the EM

scattering parameters of airborne radar targets. In Chapter 2, a

deterministic model of the EM scattering is developed and applied to

an ellipsoidal model of a target drone. In Chapter 3, techniques are

derived to compute the conditional statistical characteristics of the

scattering parameters. These statistical characteristics are

conditional on the target flight path since the mean aspect angles are

dependent only on the flight path with respect to the radar. Chapter

4 compares the analytically computed statistical characteristics at

three sample points on a flight path with results of a Monte Carlo

siwulation. At each sample point three sets of Euler angle statistics

were applied to investigate the sensitivity of the statistics of the

scattering parameters to the statistics of the aspect angles. The

results indicate the validity of the approximations used, at least for

the selected target and flight path.

The prime objective of developing techniques for analytic calcu-

lation of the statistical characteristics of the EM scattering param-

eters has been accomplished. The ability to examine the statistical

relationships among the scattering parameters will be of great value

in designing tracking filters and evaluating system performance against
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other than ideal targets. Furthermore, the deterministic model of the

scattering parameters may aid in the understanding of the scattering

phenomena and their effects on radar systems.

The secondary objective of identifying areas where existing data

or theory does not support the general application of the primary

objective has also been accomplished. The number of problem areas

exceeded expectations. The ability to model the EM scattering from

relatively simple geometrical shapes is limited. Most aircraft are

made up of large numbers of not so simple geometrical shapes which

cannot in general be acvurately modeled by quadratic surfaces, circular

cylinders or flat plates. It is essential that key reentrant structures

such as the engine duats be modeled since these represent primary

scattering centers in certain regions of aspect angles, in fact, for

many aircraft they are the largest backscattering elements in the entire

sector within 45 degrees of nose-on. The inclusion of bistatic angles

and the effects of polarization will add additional complexities to an

already complex problem.

The almost total lack of measured data on random aircraft flight

characteristics is one of the most surprising facts encountered. These

data are necessary to improve the accuracy of the results.

Measured glint data are extremely limited and do not exist on

targets of interest for air defense systems. Therefore, an evaluation

of the general accuracy of the calculated glint data is limited to

empirical judgment.
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5.2 Applications and Recomnendations

The results of this research have several applications in radar

tracking of aircraft. Two of these applications are:

(1) The statistics of the radar scattering characteristics may

be used in radar system simulations and evaluations. Present simula-

tions and analyses either ignore the target induced errors or assume

that they are independent additive processes. It is shown here,

however, that the target induced errors are not independent, but that

they are correlated with the RCS and each other. More accurate simula-

tions may result from more accurate modeling of the target induced

effects and the correlations among them. In order to further

simplify the application of the results to radar simulations,

additional work should be directed toward the development of dynamical

models of stochastic processes having the desired statistics. Haddad

[65] presents an approach for dynamical modeling of separable Markov

processes, however, this may not be sufficient for some of the tar-

gets. More complicated techniques can be based on the works of Doob

[66], Frost [67], Faurre [68], Kailath and Frost [69], and Haddad

and Valisalo [ 703.

(2) The error statistics may be applied to the design of optimum

tracking systems. The usual approach to the design and analysis of

tracking filters is to assume that the measured errors are due only

to additive white noise. Typical examples of such analyses include

the works of Mosca (71], Sharenson [72], and Urkowitz [73]. With

statistical models of the target induced errors it will be possible to

generalize these works to more realistic conditions, including non-

gaussian, trajectory-dependent, correlated noise.
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Other applications include the investigation of the statistical

relationships of the scattering parameters for different polarizations

and different frequencies. Basalov and Ostrovityanov [32] and Ewell,

Alexander, and Tomberlin [74] have investigated the effects of

polarization on the radar scattering characteristics of a target and

the effects on angle tracking. More accurate statistical models would

be useful in this arna to evaluate the possibility of using polariza-

tion agility to aid in reducing tracking errors. The analytic model

developed in Chapter 2 can be generalized to include the effects of

polarization by us'ng the works of Uslenghi and Lee [55], Moll and

Seecamp [48], and Pierson and Clay [56]. Sims and Graf [34, 35] have

investigated the use of frequency agility to reduce rms tracking errors

due to target induced errors. Finally, a statistical analysis of the

frequency sensitivity of target scattering, using techniques developed

here, may be used to extend the work in this area.

5.3 Additional Efforts and Future Plans

This research is a portion of an ongoing task in the area of

airborne radar target signatures. Three tasks have been planncd to

help fill the gaps in data and theory as applied to this problem.

Other tasks are under development but requiro coordination and concur-

rence of other agencies for actual implementation.

A contract effort is in progress at the University of Illinois to

develop solutions to the EM scattering theory for selected geometrical

bodies. These will be used first to develop a more accurate model of

the scattering from the BQM-34A target drone. Later these solutions

and others can be used to model the radar scattering from other airborne

targets of interest.
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Two radar scattering measurements programs are in progress which

will provide data to aid in validation and improvemerit of the analytic

solutions to the scattering problem. One measurement: program is at

RATSCAT, Holloman Air Force Base, New Mexico. These measurements

include glint, monostatically and bistatically, in addition to the more

conventional RCS measurements on the BQN-34A and BQM-34F target drones.

The second measurements program is being done by General Dynamics,

Convair Aerospace Division, Fort Worth, Texas on the same target drones.

This program will use short pulse technology and sophisticated data

processing to identify the location and provide infolcunation on individual

scattering centers. It is expected that these two measurements programs

will aid greatly in the development of more accurate analytic modeling

techniques.

The data desired on aircraft flight ch-.racteristics are essential

to the statistical modeling effort. However, any program to make the

necessary measurements will require the assistance of the Air Force or

the Navy, or both. Development of actual data requirements has not been

initiated due to lack of time.

The work reported here is of interest to all servicec. Closer

coordination is planned in the future due to the overlapping interests

and the expense involved in this type of research.
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APPENDIX A. FAR-FIWLD M-BODY ELECTRW4AGKETIC
SCATTERING EQUATIONS

A.1 General

The following derivation assumes that, the target is composed of M

point scatterers and is illuminated by a linearly polarized incident

plane wave moving along the line of sight in the direction of the

target.

I• The Poynting vector for an electromagnetic field is given by

we = Re (E x H*) (A.1)

P a Poynting vector

E a( Et E +'4 E1 9e Wt

IH =(H ?+ H y j + Hzkt)eJWt

w = angular frequency.

Figure A.1 depicts the target oriented coordinate systems (polar

and Cartesian) and Equations (A.2) and (A.3) define the transformations

between these two coordinate systems.

[;-} [D]

I Preceidng page blank

S, • • U
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Figure A.1. Target Centered Coordinate Systems
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where

d 11 sine cos cp

d12 -sine sincp

d13= cos e

d21 = cos e cos T

d22 - cos 0 sin P

d23 - - sine

d3 1 = - sinq,

d32 cOSP

d33 ' 0 (A.3)

The incident wave has electric and magnetic components given by

- (inc Ee inc I* + E inc -t* e jWt (A.4)-in O (AP,4

and

~er W -(% in ~+ H inc e~ ejWt (A .5)
where

1inc aRe ( 9 X nc)

The components of the electromagnetic wave scattered from the

i-th element, having cross section Si, are expressed as

•ref" " -i tinc (A.6)

ref i4
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Sc - N (A.7)

where

ref " i inc

The units of Pref are watts and those of Pinc are watts/m2n

A.2 Geometrical Computations

Let the source and observation point Q be located at (x, y, z) or

(R, 0, (p) and the i-th scatterer be located at (xil Yip zi) with

respect to the target centered coordinate system. Then the observation

point is at (x - xi, y - Yip z - zi) or (Ri, ei, pi) with respect to

the shifted coordinate systems centered at the i-th element, and has

unit vectors Uri, uei, u i, in the local polar coordinate system

centered at the i-th element. The relations between the coordinates

are given by

1

Rj=[(x x 12 +(y _y)2 + (z zi)2 J 2  (A.8)

(P arctan( X (A.9)

and

Oi = arccos R( /i) (A.1O)

The Cartesian unit vectors 1, j, k are related to the polar unit

vectors urip uei, U i at the observation point by the transformation

t - -4 1

'ri

wr [Di i]s o+ td.1

where D i is obtained by substituting 0 i and q•i for 0 and (p in Do
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The reflected 9 field from the i-th element may be written as

where the radial dependence is neglected. Hence, the transformations

(A.2) and (A.11) result in the following expressions for the components

of the reflected field in the original system are given by

Eri Ur 0
E'i u.e L [i i ei (A.12)

+' I
If it is assumed that R >>ix + y + z , then e e ePi •, and

2f 2t 2is

Ri m R, then the components of the E field in (A.12) become approxi-

mately

"ri sEei xcos coscp - yicos sinp zi sine)

+ Eqi (-xi sin T + yi cos T

Eeli L- e i
Vi E " (A.13)

The relative phase difference between the reflected electromag-

netic waves of two scatterers is given by

a 6R (A.14)

where AR is the difference in range. The phase shift for each

scatterer must be computed so that the vector fields can be properly

sumned. If the target center is used as the reference point, then for

VI
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the i-th scatterer AtR R- Ri - "xi sine cos p - Yi sinG sin q

-z cos e so that the fields observed at point Q from the i-th

element have a time dependence of eJ (c0t + ai).

A.3 Total Field Summation

Let

P Re (x V*)ir (A. 15)

be the incident power on the target array where

= E osB - + sin

S= H ( sin b u0 + cos 8 -u

and 8 is the polarization angle of the E field referenced to the -U.

vector. Then the electromagnetic fields reflected from the i-th

element and observed at Q are given from (A.13) by

E vs- Cos8 sin -Erec R + R i f2 r

+cos 5 +s n ] (A.16)

' rec i R[ R il R • 21) Ur

s sin 8 u0 + Cos u A.17)

where

fli ="Xi cose coscp• yicose sincp- zi sine

and

f x sin q + Yi cos
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Hence, the total fields at Q due to the entire target array are given

by:

+ S Csn 8 si • 5• )C.SE - f + Cos + oirec =i [ R Rli "-R f2 'r osUe

eij(Wt + ai + 3)
+ +sin 5u] e (A. 18)

+ Cos 6 o e • W'+a (A.19)

The components of power received at Q are found from (A.1). Thus,

the ur component of received power is given by

Urr =Re ( H* E H*

Pr rec rec reac cp rec 6rc

M M
P E ECosa OJ (A.20)

R2 iml j=1 t~j

Similarly the •and u components of received power are expressed,

respectively, by

P = Re E H* - E, H*
rec Er rec r ec rec r rec)

M MP

4R 3i1zl j E1ul 1Cs a j(.1

and

P =Re (E H* -E

erec cprec r rec r rec cp rec)

M M
- z z S J j f Cos (ck - crj) (A.22)

R 3inljml
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A.4 The Scattering Parameters

The RCS, S, is defined by

S -refI (A.23)S Pinc

with both P inc and Pref being referred to the target, that is with the

radial dependence of power removed. P inc has units of watts/m2 and

Pef has units of watts. In this case,

S-- Pr recl - Cos (a4 -a . (A.24)
'2.m Jul

The u error, E , in linear units at the target, is given by
RP H)

R c rec f cos(1 ) A.)

r rec i•i Jul- 2i
(Ah.25)

The u error, e., measured in linear units at the target, is given by

R Pe rec M
- 1zJ z f cos (a - a\

r rec S uJ- J - 1-
(A.26)

The target phase, referenced to the target center, is given by

z %i sini-i
PHAS = arctan 1 . (A.27)

These equations are used in Chapter 2 in the analytic modeling of

the scattering parameters from a target.
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APPENDIX B. STATISTICS OF THE ASPECT ANGLES

Let (R0 , e0 , (p0) be the polar coordinates of the target in the

ground fixed coordinate system, and (R, e, cp) be the coordinates of

the origin of the ground fixed coordinate system in the target fixed

coordinate system. Since R = R, only the aspect angles need to be

considered in the analysis. From (2.1) and (3.3)

sin 0 sin cp -Ta] [T,. -sin 00sin po(B.1)

Cos 0 L-COS 900[sin e cosc -sin e CosCOB

sin e sin 4) - T p[, -sin 60 sin (0 (B.2)

cos 6 -cos 60

where c = - a. The angles 0 0 and cp0 are dependent on the flight path

only and therefore they can be considered as deterministic for the

calculation of the conditional joint density of e and e. Therefore,

(B.1) and (B.2) may be considered as functions of the random variables

whr, and y, and T and g respectively. It is possible to solve (B.2)

for p and y as functions of a and ý as follc-.q.

Let

Sr0 m/sn20 0  2cc2"r 0 i e os(O + Cos 0 0
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0 coo0 P -i e0 C coos 0

r 0 sin 00 Cos 0 C (B.3)

then

sine coo -- r 0 Cos 0cos P - r 0 sino 0sinP

r 0 Coso (P P o) (B.4)

Let

2 2 2
r /sin 2 0 sin CP+ cos e

r cos 70 a sin e sin

r sin Yo cos 0 (B.5)

then

sin0 0 sin 0 = r cos yo cos 7 + r sin yo sin y

-r cos (7 + 70) (B6)

Therefore, from (B.4) and (B.6),

sin 6 Coso(- 0)" " o (B.7)r0

Cos sin 60 sin •0 (B.8)co 7+ 0o) ""- r

cos e0tan 0 s0 (B.9)

os e
tan yo = sin e sin (B.10)

Hence, • and y can be written explicitly as
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r0 cos 00 - sin c0 Cos (0

r0 sin 00 - cos 00 (B.3)

then

sinO coso - r0 cos 00 cos p - r 0 sin 00 sinp

- r cos (P- 0 ) (B.4)

Let

r / 2 2 .+ os2

r 'sin 0 sin (Pco 6

r cos 0 sine sin c

r sin Y0o- cos 0 (B.5)

then

sin 00 sinco- " r cos yo cos y + r sin0 sin y

-- r cos (7+B7) B.6)

Therefore, from (B.4) and (B.6),

cs( ) -sin 6 cos .Cos P 0 P 0(B.7)

sin e0 sin (B.8)coo (Y + YO) "" r .8
Cos 60

tan 0cos (B.9)
tan 0 sin 00 Cos TO

ta o cos e B.0

sin e sin (B.1O)

Hence, P and y can be written explicitly as



S~123

co 6

Sarccos sin 8 Cos0 + arctan (B.11)

. esin 0 0 in 0o / cose 0 (B.12)
y arccos r Sin q sin

where r0 and r are defined in (B.3" and (B.5).

The joint probability density function of e and ( is found by

the transformation

fe 'V(e "() = e•lJ ()

where p and y are expressed as in (B.11) and (B.12), and J is the Jaco-

bian of the transformation. Since a is an additive factor to q, the

joint probability density function for e and q is found by convolving

the joint density function for e and " with the density function for a

in the q variable only.

The magnitude of the Jacobian of the transformation is given by

where the partial derivatives are found by implicit differentiation to

be

- Cos 2 cos (P

= sin

6m- sin 7 - cote cosy sin7

= -cot e cos
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resulting in the expression

/ I" sin20 se 2o .

The transformation from p-' space to 0-' space is one-to-one only

if and y are restricted to the region 0- O 3t , and 0- 5 7 -< 2X.

The quadrant for p0 and yo can be found by considering the signs of

the numerator and denominator in (B.9) and (B.10). The quadrant for

(7 + Y0) and (P - P0) are found by considering (B.17) as well as (B.8)

and (B.11).

Figures B.1 and B.2 depict the joint probability density

functions for e and and e and cp for • - 1.6497 and • - -0.20186,

i.e., at sample point 1 as defined in Chapter 4. Table B.1 compares

the moments calculated by numerical integration of the joint probabil-

ity density function for e and (p, and the moments calculated from the

linear approximations of (3.19) and (3.20).
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Figure B.1. Joint Probability Density Function of 0 and '
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II
Figure B.2. Joint Probability Density Function of 0 and (p



126

0 4 0 N N 1

CO r4 N ; 0 N

" "4 a ¶

0

40

0

'.4a

$4 44 0 (~ U

*4 41a % " O " %
"4 CO . ~ 0 N N Q



127

APPENDIX C. ERROR ANALYSIS

C.1 General

It was pointed out in Chapter 3 that the process described for

computing the statistical characteristics introduces errors due to the

assumptions made. In the computation of the four moments by

numerical integration there are errors introduced at two points. In

the computation of the covariance functions using the characteristic

function method, there are errors introduced at three points. This

Appendix estimates these errors or their level of significance.

C.2 Computation of the Moments Using Numerical Integration

There are two sources of errors in the computation of the moments

by numerical integration as described in Chapter 3. One error is due

to truncation of the data and the probability denisty function. The

other error is due to the use of the rectangular (Euler) technique for

numerical integration. Let x and y be normal random variables with

joint probability density function f(x,y) and let g(x,y) be a function

whose moments are to be calculated. Both functions are truncated at

-4a and +4a from the means in each dimension and then sampled at N

points in each dimension. The moments of g(x,y) are computed by

Sr N N
E ~gr(xy) , Z gr(nAxmAy) f(nAx,mAy) 6xAy

(C.1)

where the origin is shifted to the (-4a, - 4a) point and Ax and Ay

are the sample intervals. If N is sufficiently large, and g(x,y) is a
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relatively smooth function, then the accuracy obtained by (C.1) is

adequate. The error is computing the expectation of a constant

function over the region described using 128 data points in each

dimension is about 0.013 percent.

The first two moments computed this way have been compared to the

results using (3.37) and (3.39) with excellent results. As was

demonstrated in Chapter 4, excellent agreement with the results of

simulations was also obtained.

C.3 Computation of the Covariance Functions

The computation of the covariance functions using a discretized

version of the characteristic function method introduces errors at

three points. The one-dimensional case will be considered first. The

errors in computing the expectation of a function g(x) are introduced

due to the following assumptions:

(1) The replacement of the actual function g(x) by a periodic

function gT(x).

(2) The use of the Fast Fourier Transform (FFT) to estimate the

Fourier series coefficients for the periodic function gT(x).

(3) The use of a fini.te number of the Fourier series coefficients

in the smanation of the expectation of gT(x).

The actual function, g(x), is replaced by a periodic function,

gT(x), such that

g (x) g(x)

for

T -

~2
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S (x) g.(x + M)

where the period T is defined to be 2Ma where a is the standard devia-

tion of the probability density function f(x) which is assumed to have

zero mean.

The first error in computing the expectation (3.39) is introduced

by the approximation

This error may be bounded as

ER1 - g g(x) - gT(x) f(x) dxI E I!x Tx
+ J g~Xj - gT~~xJ fIxj ux 4'~ sup g(x) erfc

T (C.3)

For

T I~ T 3l0
4cr erfc k2 3x 6

so that

.4I(C4
E <1.2 x 10- sup I g(x) (C.4)

The periodic function gT(x) may be represented by its Fourier series

gT(x)- Am exp kJ f) (C.5)

so that its expectation is given by

E {ST(X) E{ Am exp

(MM 0 T a -W(C.6)
where 0 (v) is the characteristic function of the random variable x.x



130

The second error encountered in computing the expectation is in

estimating the Fourier series coefficients A. by using the FFT. From

(3.40), the estimate of the n-th coefficient is given by

N-1\
A = gT(kAx) exp 2 T (C.7)

IQNO

which with (C.5) results in

S N-i a* 21km Ax
A E E exp (eJ2 k 'n N kO ME- CO m T IT

1 A 1 - exp [j2L(m- n)]
m-=o 1 - expL

Am exp [(m - n) -sin(m-n)
M,,-co N sin (m - n)

CO
= AfiN, n <•N (C.8)

i---2

The resulting error is due to aliasing caused by failure to meet

the Nyquist sampling criterion. Furthermore, it only yields a finite

number of coefficients.

The third source of error is in taking only a finite number of

terms in the summation (C.6) namely,

k
E {gT(x)) E A n 0 (n) (C.-9)n--k n

where

e=. (C.lO)

(n 2t\Vp (In)2(oo



131

A bound on the resulting error may be obtained as

E2 - An x(n)k2suPA Z (n)
2k n >k nu1*l

5 2 sup A exp 1- 2 1 (C.11)
n A In>k 1 - exp t(- k + 1).

For M = 4 and km 8 the resulting bound is equal to

S5 3.1l0" sup IAI (C.12)
n :>k

The above analysis for the third error source does.not apply to a

joint characteristic function of strongly correlated random variables.

The normalized two-dimensional characteristic function for two jointly

Gaussian, random variables is given by

S(u,v) a exp [-~(u2 + 2ruv + v 2)]

where r is the correlation coefficient of x and y. When r = 1,

¢ (u,-u) =1

so that the argument for limiting the sum as in the one-dimensional

case does not hold. However, when iu + rvl> 8, the characteristic

function is less than 2 x 10 9. Therefore, only about 8 terms on each

side of the line u a - v sgn(r) need be taken in the summations.

Now consider the spectrum of the transform of the scattering

parameters under study here. It can be shown that 99 percent of the

power is contained in about half of the total spectrum. Therefore,

it is possible to limit the sunmmations to a narrow band about the

*mm m mm m mm m
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line defined above. In practice, it is possible to obtain excellent

results using even fever components than those containing 99 percent

of the power. Similarly the aliasing error represented by (C.8) can

be neglected.
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